The Nilpotent Filtration in Group Cohomology

Ryan Sterling Higginbottom
Charlottesville, Virginia

B.S., Bucknell University, 1999
M.S., University of Virginia, 2001

A Dissertation presented to the Graduate Faculty
of the University of Virginia in Candidacy for the Degree of
Doctor of Philosophy

Department of Mathematics

University of Virginia
August 2005
Abstract

Let P be a finite p-group and let e be an idempotent in $\mathbb{F}_p[\text{Out}(P)]$. In this dissertation we explore the Krull dimension of $eH^*(P; \mathbb{F}_p)$. It is known that this dimension cannot exceed the largest rank of an elementary abelian p-subgroup of P. We investigate conditions on P which ensure that $\dim(eH^*(P))$ is maximal.

The nilpotent filtration of the category of unstable modules over the Steenrod algebra plays a key role in the solutions we present. In particular, the dimension of a module depends only on the size of the subquotients in its nilpotent filtration. We also rely on the descriptions of the localization of \mathcal{U} with respect to the categories \mathcal{Nil}_n given by H. W. Henn, J. Lannes, and L. Schwartz in [19] and [20].

Our main results come in the form of two separate group theoretic criteria. For a group P, $\dim(eH^*(P))$ is maximal if:

- P has an elementary abelian p-subgroup of maximal rank which is both normal in P and self-centralizing; or

- all elements of order p are central.
Table of Contents

Introduction \hspace{1cm} i

1 The question of Martino-Priddy \hspace{1cm} 1

1.1 Idempotents and splittings of spectra \hspace{1cm} 1

1.2 Summands of $\Sigma^\infty BP$ \hspace{1cm} 3

1.3 The dimension of dominant summands \hspace{1cm} 5

1.4 Adjusting the problem \hspace{1cm} 6

2 The nilpotent filtration of U \hspace{1cm} 9

2.1 The Steenrod algebra \hspace{1cm} 9

2.2 Localization in an abelian category \hspace{1cm} 15

2.3 Localization in U \hspace{1cm} 17

2.3.1 The categories Nil_n \hspace{1cm} 17

2.3.2 Localization with respect to Nil \hspace{1cm} 20

2.4 Neighboring subcategories \hspace{1cm} 22
3 Dimension within \mathcal{U}

3.1 Background in dimension theory.............................27
3.2 The category $K_{fg} - \mathcal{U}$.................................32
3.3 The modules $\overline{R}_s(M)$ and dimension.....................35
3.4 A strategy for calculating $\dim(M)$..............................37
3.5 An example...42

4 The dimension of $eH^*(P)$

4.1 Maximality and composition factors..........................45
4.2 A lower bound for $\dim(e_S H^*(P))$.........................49
4.3 An answer for certain groups.................................67

5 Formulas for $L_n(H^*(G))$, $\overline{R}_n(H^*(G))$ and $LF(H^*(G))$

5.1 Localization away from $\mathcal{N}il_n$.........................71
5.2 Locally finite modules......................................77

6 Limits over a smaller category

6.1 The internal direct product construction...................81
6.2 Limits over smaller categories.............................83

7 p-central groups

7.1 Revisiting formulas..................................93
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 An answer for (p)-central groups</td>
<td>94</td>
</tr>
<tr>
<td>8 Examples</td>
<td>98</td>
</tr>
<tr>
<td>8.1 Using a spectral sequence</td>
<td>98</td>
</tr>
<tr>
<td>8.2 Calculations of (R_n(H^(P))) and (\overline{R}_n(H^(P)))</td>
<td>100</td>
</tr>
<tr>
<td>8.3 Progress for small 2-groups</td>
<td>102</td>
</tr>
<tr>
<td>Bibliography</td>
<td>108</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>113</td>
</tr>
<tr>
<td>Index of Terminology</td>
<td>114</td>
</tr>
</tbody>
</table>
Acknowledgements

My advisor, Nicholas Kuhn, has generously shared his time, energy, ideas, and advice with me over the past years, and I owe him a debt of gratitude. Additionally, I am grateful to Gregory Arone, Brian Parshall, and Daniel Keenan for serving on my dissertation committee.

My family and friends have also been tremendously supportive during this endeavor. Specifically, I wish to thank my parents, who have been constant in their interest, encouragement and love.

Finally, my deepest love and appreciation are reserved for my wife, Leanne. She has been patient, caring, encouraging, and helpful in more ways than I could ever recount.

“Here I raise my Ebenezer,
Hither by Thy help I’m come.”

Soli Deo Gloria